Simulation of Engine Expansion for Transparent Nozzle Combustion Research
Paul Abers¹, Lyle Pickett²
¹Arizona State University, ²Sandia National Laboratories

Abstract

The previous setup for the transparent nozzle injection spray investigation had no ability to simulate the expansion of a car engine. After adding a solenoid valve pressure system that allows depressurization of the vessel, it was shown that the splash back was greatly reduced and that air bubbles could be removed from the sack and nozzle tip of the system. Pressure data collected shows the pressure change in the system versus time during the expansion simulation and the system now has the capabilities to include a dynamic back pressure for injections.

Injection

As the injector opens, air is sucked from the spray chamber into the nozzle tip. Then the high pressure fuel flows from the injector through the chamber and into the spray chamber. A liquid core can be seen in the base of the spray.

Experimental Setup

Before any devices are triggered, the intake solenoid is open and the exhaust solenoid is closed. The intake solenoid's input is connected to 20 Bar and the exhaust solenoid's output is connected to vent. Upon initial trigger, the intake solenoid closes and the exhaust opens. This allows the pressure to bleed from the system. Each solenoid has a bypass line to skip the solenoids and allow depressurization of the vessel, it was shown that the splash back was greatly reduced and that air bubbles could be removed from the sack and nozzle tip of the system. Pressure data collected shows the pressure change in the system versus time during the expansion simulation and the system now has the capabilities to include a dynamic back pressure for injections.

The above setup was used for gathering images of injection sprays with the transparent nozzle. The blue and red LEDs flash in time with each camera opposite such that the LEDs backlight the area of focus for imaging.

Conclusion

The new system was successfully constructed and setup. Data collected showed the new system helps limit splash back and pulls the air bubbles formed from cavitation out of the sack and the nozzle tip.

Acknowledgments

I would also like to thank colleagues Dr. Emre Cenker, Christian Ingwerson, Peter Nyholm, and Aaron Czeszynski for their insight he provided along the way. None of this would be possible without him.

I would like to thank Dr. Lyle Pickett for sponsoring my project and for the immense amount of help and insight he provided along the way. None of this would be possible without him.

I would also like to thank the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA000352.

1 This work was performed as part of the Sandia National Laboratories’ National Nuclear Security Administration’s Laboratory Directed Research and Development program.

2 Research performed at Sandia National Laboratories, Livermore, CA. Sandia National Laboratories is managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA000352.

The graph shows that the pressure was successfully able to be decreased with the solenoid valve setup. The solenoids were triggered early due to their delay so that the injection was triggered into an already depressurizing system which helped limit splash back. This is a completely new system that allows a user to simulate successive expansion and compression cycles of a car engine by changing the trigger times for the solenoids.

The first image is about 50 ms after injection where the system has settled down and cavitation has pulled some air into the nozzle tip and sack. The second image is after 300 ms and it shows that the first air bubble has already been successfully pulled out of the nozzle tip and that the second is being stretched as it is also pulled on. The third image occurs a little under one second after injection and shows the second bubble being pulled out of the nozzle tip as the spray chamber continues depressurizing.

The images above show the spray as the injector closes. An interesting phenomena occurs when the injector is closing. In the after section, there is nothing found in the sack. As the injector closes, there occurs a large growth of black area, these shadows are from a vacuum that has formed from cavitation. The liquid then moves into the vacuum areas, air is pulled from outside the nozzle into the nozzle tip.

In the old setup, before the expansion simulation was added, there was significant splash back that obscured the camera’s view drastically. After adding the expansion simulation setup, the spray chamber had much less splash back and the camera’s view was no longer obscured.

Images for Injection Spray

Images for Previous Splash Back

Images for Current Splash Back

Graph of Pressure versus Time

Images for Air Bubbles being “Sucked” Out of Nozzle